A Parallel Multistage ILU Factorization Based on a Hierarchical Graph Decomposition
نویسندگان
چکیده
PHIDAL (Parallel Hierarchical Interface Decomposition ALgorithm) is a parallel incomplete factorization method which exploits a hierarchical interface decomposition of the adjacency graph of the coefficient matrix. The idea of the decomposition is similar to that of the well-known wirebasket techniques used in domain decomposition. However, the method is devised for general, irregularly structured, sparse linear systems. This paper describes a few algorithms for obtaining good quality hierarchical graph decompositions and discusses the parallel implementation of the factorization procedure. Numerical experiments are reported to illustrate the scalability of the algorithm and its effectiveness as a general purpose parallel linear system solver.
منابع مشابه
Parallel Multilevel Block ILU Preconditioning Techniques for Large Sparse Linear Systems
We present a class of parallel preconditioning strategies built on a multilevel block incomplete LU (ILU) factorization technique to solve large sparse linear systems on distributed memory parallel computers. The preconditioners are constructed by using the concept of block independent sets. Two algorithms for constructing block independent sets of a distributed sparse matrix are proposed. We c...
متن کاملDistributed block independent set algorithms and parallel multilevel ILU preconditioners
We present a class of parallel preconditioning strategies utilizing multilevel block incomplete LU (ILU) factorization techniques to solve large sparse linear systems. The preconditioners are constructed by exploiting the concept of block independent sets (BISs). Two algorithms for constructing BISs of a sparse matrix in a distributed environment are proposed. We compare a few implementations o...
متن کاملLevel-based Incomplete LU Factorization: Graph Model and Algorithms
A graph theoretic process that models level-based, incomplete LU factorization (ILU(`)) of sparse unsymmetric matrices is developed. The model leads to two incomplete fill path theorems that are generalizations of the original fill path theorem of Rose, Tarjan, and Lueker. Our S-level incomplete fill path theorem leads to the development of new, embarrassingly parallel algorithms for computing ...
متن کاملA Multilevel Dual Reordering Strategy for Robust Incomplete LU Factorization of Indefinite Matrices
A dual reordering strategy based on both threshold and graph reorderings is introduced to construct robust incomplete LU (ILU) factorization of indefinite matrices. The ILU matrix is constructed as a preconditioner for the original matrix to be used in a preconditioned iterative scheme. The matrix is first divided into two parts according to a threshold parameter to control diagonal dominance. ...
متن کاملParallel two level block ILU preconditioning techniques for solving large sparse linear systems
We discuss issues related to domain decomposition and multilevel preconditioning techniques which are often employed for solving large sparse linear systems in parallel computations. We introduce a class of parallel preconditioning techniques for general sparse linear systems based on a two level block ILU factorization strategy. We give some new data structures and strategies to construct loca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 28 شماره
صفحات -
تاریخ انتشار 2006